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In the investigation of combustion in various systems, additional
assumptions often have to be made about the properties of particular
quantities owing to the impossibility of obtaining exact solutions of
the corresponding equations, For instance, in the investigation of the
combustion of powder the temperature gradient on the surface of the
condensed phase plays an important role, In the steady state this
gradient ¢ is given by the relationship

Cp = uh-1 (T1 —_— To) . (0.1)

Here u is the burning rate, Ais the thermal diffusivity, T, is
the temperature of the swrface of the powder, and Ty is the temperature
of the cold powder,

It is important to find out how ¢ behaves when Ty changes. When
Ty decreases the factor u decreages, while (T; ~ Tg) increases, and it
is very difficult to draw any conclusions regarding the behavior of @,
Zel'dovich in [1, 2] suggested that the gradient ¢ as a function of Ty
has a maximum and that for each value of ¢ there are two combustion
regimes—one stable (for large T;) and one unstable (for small Tg).
Since at the maximum point dg/dTy = 0, combustion is regarded as
stable if d¢/dTy < 0 and as unstable if dg¢/dTy > 0. Ithasbeenreported
on several occasions [2~5], however, that this criterion is not always
satisfied, and various hypotheses as to the possible reasons for this
discrepancy have been put forward, In addition, it is of definite inter-
est to analyze the basic assumption of the existence of a maximum of
¢. If such an analysis is to be made, the right side of (0.1) will have
to be expressed in terms of one variable, u or Ty, for which, in turn,
a relationship between u and Ty will have to be obtained,

This paper consists of four sections. In §1 the normal propagation
of a flame is investigated and a formula relating u to Ty is derived. In
§2 the relationship between u and T, in the case of combustion of
condensed substances is obtained by a similar method. In §3 the ob-
tained formulas are used to investigate the behavior of the temperature
gradient, In §4 the stability of combustion processes is analyzed,

§1. Normal propagation of flame in gases, We know [6,7] that the
normal propagation of flame in a gas when the thermal diffusivity and
diffusion coefficient are equal is represented by the differential equa-
tion

AET/da? + udTidz + F (T) =0, (1.1)

with boundary conditions
Tlesoo=Ts Tlpyico=Tho. (1.2)

Here T(x) is the temperature along the x-axis, Ty is the temperature
of cold gas, T, is the temperature of the burned gas, and X is the ther-
mal diffusivity, The flame is propagated in the positive direction of
the x-axis. Function F(T) satisfies the conditions; F(T) = 0 when Ty =
=T=T; F(T) >0 when Ty < T< Ty, and F(T) =0 when T > Ty, In
the interval (Ty, T,) function F(T) has one maximum, The parameter u
characterizes the normal velocity of flame propagation, We have to
find the value of this parameter for which there is a sclution of problem
{1.1) and (1.2).

In [8, 7] the existence of a single value of this parameter wasdemon-~
strated, Various methods [6, 8~10] have been proposed for the calcula-
tion of u, A formula for the approximate calculation of u is given in
[6,101:

Ty
w= Y2 J==§ F(T)dT . (1.3)
Ty —To

This formula is based on neglect of the middie term of Eq. (1.1) inthe
combustion zone, It is easy to see that formula (1.3) will give a value
of u in excess of the exact value. In fact, if the middle term is not

neglected then the integrand in (1.3) will be F(T) + udT/dx, which is
less than F(T), since dT/dx < 0. Thisbecomes particularly appreciable
as Tg — Ty, since then the value of u from formula (1.3) can be~
come as large as you please; it follows from [11] that u actually has a
limit as To-> T;.

A review of various methods of solving the problem is given in [8].
In [9] numerical integration of the nonstationary system of heat-conduc-
tion and diffusion equations was used to find u. In this section we pro-~
pose a method by which an approximate value of u and the temperature
distribution in the flame can be found fairly easily, As the example
given at the end of the section shows, the value of u calculated by this
method is reasonably close to the exact value, The convenience of
this method lies in the fact that the relationship between u and the
parameters of the process is obtained in analytical form. We assume
that Tlx= = T;; then fox x = 0

Tymy=(T1—To)exp(—uz/h)+Ts. (1.4)

To find the temperature distribution when x < 0 we replace func-
tion F(T) by a piecewise-linear function in the interval [T}, To]. We
perform the linearization in the following way, We take a point Ty in
[Ty, T,] and construct a triangle with base [Ty, T;] and its third vertex
P situated above the point T3, We require the area of the triangle to
be equal to the area under the curve F(T), i.e.,

z,
S=§ F(T)dT = J .

It is obvious that the third vertex is uniquely determined (for a
particular choice of T3). The point T3 can be chosen at the maximum
point of F(T). We denote the function obtained in this way by F*(T) and
we have

Bi(T— Ty for T'TKTs Bi>0)
F* (= {Bz (T —Ts) for Ts<T LT B<<O)
0 for T LTy and T>T,.

Let T(x) take the value T3 when x = I < 0, Then for the interval
(1,0) the solution is given by the equation

MdsT Jdz® + wdT [ dz + By (T — T1) == 0. (1.5)

In the integration of this equation it must be borne in mind that if
Ty =Ty, thenus= 2(>\Bl)‘/2, according to [12], and hence, for Tp < Ty,
u< 20»31)1/z . The solution has the form

T |sepr, o) = Crexp (— uz / 23) 5in Yok V 4AB1 — w?) + T1.  (L.6)
The constantC, is determined from the condition Tjy=; = Ty:

_ (Ts—Th)exp(ul/2))
Gr= sin (A1 VEAB, — ) * D

For x = [ the solution is given by Eq, (1.1) in which F(T) = BT ~
- Tp. This solution has the form

T l:x:<l =Caexp (rsz) -+ Ta

(e=—u/2+ V22 T 1BI/A,
Ca=(T's — Ts) exp (— ral).

When x = 0 and x = [ the conditions of equality of the first deriva-
tives must be satisfied, This gives us two equations for the determina~
tion of I and u

4 (Ts—Ty)exp(ul/2)) ViBi— &
2 sin (Yaht YV EABL — u2) ’

—(Ty—To)u= (1.8)
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(Ts—Tors =g sin (537 VB 1) -+
+ oo (i VIR = #1)x

(T3—Ty)

1
o VIR | .9

This system, however, is unsuitable for solution and investigation,
Since Tj; is usually close to T, we convert to the limit T3 T, This
limiting transition can be interpreted as replacement of the function
F(T) in the interval [Ty, T,] by the function B(T - T;), so that the area
of the corresponding triangle is equal to J, In this case we have

B=2J/(Ta—Th)*,

From (1.9) we obtain

tg (AT VI — w2 ) =u"? VEAB —u?. (1.10)
Then (1.8) takes the form
wexp(—ul/MNy= V2AJ/T1—T,. (1.11)

It should be borne in mind here that for a prescribed u a solution
of (1.10) given by the first negative root is considered, System (1.10),
(1.11) uniquely determines ! and u, For u=>0 we havel ~ m(A/B)*/%/2
and I ~ ~27A/(4A8 — 1)M/2 as u— 2()»8)1/2 . An approximate ex-
pression for [ is

l=—2u0) VIAB — 24+ n/2 VA/B,

[ as Ty — — oo,

u—2VAB

For small u we have exp(=ul/A) ~ 1 and formula (1.11) becomes
formula (1.3). Since I < 0, formula (1.11) gives a value of u less than
that given by (1.3).

Thus, to calculate u we must calculate the integral J and then
solve the system (1.10), (1.11). The required value of u can be "tracked
down” fairly rapidly when one considers that its maximum possible
value is 2(\8)/2. After finding I and u we obtain the temperature dis-
tribution

as Ty Ty . (1.12)

T |x>0= (1 —To)exp(—uz /M) + T,
T |cueo = © ©XP (— Yauz [ ) sin (U3~1 YV 4AR — w?2) + Ty,
¢m= — 2(Ty— Ty exp(ul | A) VABTAAB — 8.

T |x<l =T

The difficulty arising out of introduction of the ignition temperature
T; has been noted in many references. It is difficult to determine this
temperature experimentally, but it must come into theoretical models,
since usually there is a range of temperatures greater than Ty at which
the gas does not react, If the Arthenius law is used for thereaction rate
F(T) = exp(-E/RT)A - BT).

In this case the value of T can be chosen so that after T, the func-
tion F(T) begins to increase rapidly. Some arbitrariness in the choice
of Ty will not be very significant in this case.

In [6, 10] the following method was used to eliminate the ignition
temperature, In formula (1.3) the lower limit Ty of the integral is re-
placed by Ty, and the difference Ty ~ Ty by the difference T, — Th.
While replacement of the lower limit is quite valid, since in the inter-
val [Ty, T}] function F(T) is close to zero, there appear to be no grounds
for the substitution of T, — Ty, if Ty differs greatly from Ty. For illus-
tration and comparison we consider an example from [9], for the case
of interest to us, i.e,, equality of the thermal diffusivity and the dif-
fusion coefficient (in the notation of [9] the case o = 1). Function

F (T) = 10% exp (—15 000/7)(2300 — T), A =14,
Ty — 300, T, = 2300, F (1000) = 0, F (1100) =~ 1.6,
F (1200) = 3.9, F (1300) == 99, F (1400) ~ 202,

We put Ty = 1200 ; then
Ty — Ty = 900, Ty — Ty = 2000; J = 898 -103.

If we use formula (1.3), we obtain u = 1,5, If we replace T; = T
by T, = To, we obtain u =0.67, The exact value of u, found in [9] by
numerical integration, was 0,71, We calculate u by the method pro-
posed in the present paper, We have B =1.48 and omitting the inter-
mediate trial steps, we put u= 0,60, Then from (1,10) we have I =
~ -1.6, uexp(~ul) = 1.56, The right side of (1,11) is 1.5 and, hence,
u can be taken as 0.60, If we take T; = 1100 or T, = 1300, we obtain
approximately the same value of u,

§2. Combustion of condensed substances. The same method can
be used to investigate the combustion of condensed substances (powders
and solid rocket fuels). Let the solid phase (k-phase) occupy the region
x > 0, We choose the origin of coordinates on the surface of combus-
tion of the k-phase and, hence, the solid fuel moves with velocity u
toward the surface x = 0. On the surface x = 0 the k-phase is decom-
posed and in the region x < 0 there are gaseous combustion products
leaving the surface with velocity au, where o =p,/py, and py,p, are
the densities of the k-phase and the gas, respectively. The decomposi-
tion of the k~phase can be endothermic, exothermic, or thermoneutral.
We will assume that heat uptake or heat release in the k-phase depends
on q; q > 0 in the case of endothermic decomposition, g < 0 in the
case of exothermic decomposition, and q = 0 in the case of thermoneu-
tral decomposition, Then

MdT [de® +udT [dz =0, Tl._,=T1
Tlyrto="To (z>0),
ha d2T / da? + au dT /dx -+ F (T)==0,
T Ix—»—oo =T, T ,x=0 =Ty (x<0) ’
and also
By AT [d |, o —hedT [d2 | o= gp1u ,
where k; and k, are the thermal conductivities of the k-phase and gas,
respectively, and ¢y and ¢, are the corresponding specific heats.
To solve this problem we proceed as in §1, by linearizing F(T) in

the interval [Ty, T,]. Omitting similar calculations, we write the sys-
tem for I and u

tg (Yaho™? V &R — 0% [) = (au)™! V EAoB — oPu?, 2.1)

kahe™1 VW — aul
Fd (T, — To) g — “°%P ( Te ) . @2
27ths 1 Ao\
=~V e () @3)

Relationships (2,1) and (2.2) give u as a function of Tg. If ¢ > 0
(endothermic decomposition of k-phase), then when Ty = T, the veloc-
ity does not attain the value u = Z(XZB)I/ % /a. Inthe case q =0 the
situation is similar to that considered in §1, If ¢ = —p <0, then at the
maximum permissible value of Ty, given by the relationship

kb7 (Ty — To) = ppy, O Ci(Ty— To) =p,  (2.4)
the velocity takes the value u = 20\, ﬁ)l/z/oc. Wenote that the denom-
inator on the left side of (2.2) cannot be negative, since this would
mean that p > Cy(T; — Ty) and the process depends on the decomposi-
tion of the k-phase, and not on the reaction in the gas.

§3. Behavior of temperature gradient at x = 0. We use the preced-
ing results to investigate the behavior of the gradient at x = 0, The
absolute value of the gradient will be considered, In the case of com-
bustion of a gas we have from (1,11)

@ = (T1— Toyu/h=2"1 V20T exp (ul/}),

9o—V2I/h a To—»—o0, u—0;
(p—>0 as To—>T1. (3'1)
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It is clear from (3.1) that ¢ is a decreasing function of u(Ts) and
has no turning points, The greatest value of ¢ is (23/N'2 and is reached
as To~> —=. For each possible value of ¢ there is one combustion
regime.

In the case of combustion of condensed substances we obtain from
formula (2.2)

T1—To)u 1 Tk ol '
@ :_1_7:.”_» = [Tzz V 2he] exp—;\‘g———qpm}. (3.2)

Relationships (1.8), (1.10}, and (3.2), (2.1) give ¢ as a function of
u and, hence, as a function of Ty, These relationships can also give u
as a function of ¢.

If ¢ = 0 we proceedin asimilar way: if Tp —> =, then ¢ = kzkl'1 .
o (2170, )‘/ 2 _the greatest value of the gradient. As To— T; the value
of ¢ = 0; ¢ is a decreasing function of Ty and for each permissible
value of ¢ there is one combustion regime.

We congider the case q <0, Then (q = —p <0)

@ > leoley P V2T [ ke
@ — 2k V haB pop
as kb (T — To) = ppr{es (Tr— To) ~ P),

u—>207 Y AoJ .

as To——o0, u—>0,

It is obvious that we can regard p < cT, — T). Hence
Q< 2k V2T he 88 uw—> 2071 VB,

We find dg/du (in view of the fact that du/dT, >0, the sign of
d¢/du is the same as that of d¢/dTy) :

de 1 [ ke o ,
= H[Tz V 2hoJ exp (oul / he) -X‘z—(u[) -+ ppl] .

It is easy to see that dg/du = p@; >0 as u — 2()»26)1/2/01; as To—>

-—)—w,

dp 1t ks ;e o W { Aa\'
,Tﬁ'/;[* T, Vk MT(B) t+pp )=
17 1
=HL,,__7M(T2—-T1) <0.

Hence, there is a point at which dg¢/du = 0, but this will be a
minimum, and not a maximum, point of the gradient, The question
arises as to whether there are other turning points, It is obvious that
for specific values of the parameters we can use (3,2), (2.1) to construct
the graph of the function ¢(u) and verify the presence of a maximum.
For small p there will be no other turning points, The rapid reduction
of the factor exp(aul/N) with increase in u suggests that, apart from
the indicated minimum, there will be no other turning points for any p,

§4. Application to investigation of the stability of combustion, As
wag mentioned in the introduction, there have been many investigations
of the stability of powder combustion [1-5, 18], It was suggested in
[1, 2] that there is a value of the gradient ¢* such that a steady-state
regime with a gradient greater than ¢* is impossible, The results of
the present paper confirm the presence of a largest gradient for steady-
state regimes, However, in the theory of stability of powder combus-

tion it is very important to find out if this largest value is the maximum,

[twassuggestedin [2]that there is a maximum and thatwhen d¢/dTy < 0
the regime isstable, and when d¢/dT, > 0 itisunstable. A very general
investigation of stability was made in [5]. Since in our model, as in [1,2,
13], the temperature of the combustion surface isregarded as constant, we
use the results of [5] for this case. It was shown in [5] that if

k=(T1—To)dInu /dTy <1,

then combustion is stable and, if k > 1, then it is unstable, It is easy
to see that the condition k < 1 (> 1) is equivalent to the condition
de/dT, <0 (>0). But, as was shown above, in the case of endothermic
decomposition of the k-phase (such a case is considered in [1,2]), k is
alwayslessthan 1, i.e., inthiscase thesteady-stateregime is always
stable. Thisresult seems quite natural, since the considered model of
powder combustion is similar to the model of flame propagation, inwhich
the steady~state regime is alwaysstable [7]. Wenote incidentally thatin
the case of normal flame propagation k < 1 and, hence, stability will
ensue,

In the case of exothermic decomposition we obtain the following
picture, Here there is a minimum of ¢(Ty) and, hence, for small T,
we obtain dg/dT, < 0, consequently, stability. For large Ty we have
de¢/dT,y >0 and instability of the corresponding regimes. It is obvious,
however, that this will not be instability due to decay of the process
but, on the contrary, instability due to acceleration of the combustion
process,

The author thanks S, V. Fal'kovich for discussion of the paper.
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