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In the investigation of combustion in various systems, additional 
assumptions often have to be made about the properties of particular 
quantifies owing to the impossibility of obtaining exact solutions of 
the corresponding equations. For instance, in the investigation of the 
combustion of powder the temperature gradient on the surface of the 
condensed phase plays an important role. In the steady state this 
gradient q is given by the relationship 

= u~-I (Tr --  To). (0.1) 

Here u is the burning rate, k is the thermal diffusivity, T 1 is 
the temperature of the surface of the powder, and To is the temperature 
of the cold powder. 

It is important to find out how q behaves when To changes. When 
To decreases the factor u decreases, while (T z - To) increases, and it 
is very difficult to draw any conclusions regarding the behavior of q. 
Zel'dovich in [1, 2] suggested that the gradient ~o as a function of To 
has a maximum and that for each value of ~0 there are two combustion 
regimes-one stabIe (for large To) and one unstable (for small To). 
Since at the maximum point d~o/dTo = 0, combustion is regarded as 
stable if dq/dTo < 0 and as unstable if dq/dT0 > 0. Ithasbeenreported 
on several occasions [2-5], however, that this criterion is not always 
satisfied, and various hypotheses as to the possible reasons for this 
discrepancy have been put forward. In addition, it is of definite inter- 
est m analyze the basic assumption of the existence of a maximum of 
~. If such an analysis is to be made, the right side of (0.1) will have 
to be expressed in terms of one variable, u or T0, for which, in turn, 
a relationship between u and To will have to be obtained. 

This paper consists of four sections. In w the normal propagation 
of a flame is investigated and a formula relating u to To is derived. In 
w the relationship between u and To in the ease of combustion of 
condensed substances is obtained by a similar method. In w 3 the ob- 
tained formulas are used to investigate the behavior of the temperature 
gradient. In w the stability of combustion processes is analyzed. 

w Normal propagation of flame in gases. We know [6, 7] that the 
normal propagation of flame in a gas when the thermal diffusivity and 
diffusion coefficient are equal is represented by the differential equa- 
tion 

~#T/dzo- + udT/dx + F (T) = O, (1.1) 

with boundary conditions 

T [x~--oo = T2, T Ix-.+oo= To. (1.2) 

Here T(x) is the temperature along the x-axis, T0 is the temperature 
of cold gas, T 2 is the temperature of the burned gas, and X is the ther- 
mal diffusivity. The flame is propagated in the positive direction of 
thex-axis. Function F(T) satisfies the conditions: F(T) d O when To -< 
-< T -< Tz; F(T) > 0 when T z < T < Ts, and F(T) = 0 when T > T 2. In 
the interval (Tt, T z) function F(T) has one maximum. The parameter u 
characterizes the normal velocity of flame propagation. We have to 
find the value of this parameter for which there is a solution of problem 
(1.1) and (1.2). 

In [6, 7] the existence of a single value of this parameter was demon- 
strated. Various methods [6, 8-10] have been proposed for the calcula- 
tion of u. A formula for the approximate calculation of u is given in 
[6, I0]: 

Tz 

- -  ~ J-~-~. F ( T )  d T .  (1.3) 
u Tl --  To ' 

1 

This formula is based on neglect of the middle term of Eq. (1.1) inthe 
combustion zone. It is easy to see that formula (1.3) will give a value 
of u in excess of the exact value. In fact, if the middle term is not 

neglected then the integrand in (1.3) will be F(T) + udT/dx, which is 
less than F(T), since dT/dx < 0. This becomes particularly appreciable 
as To ~ T t ,  since then the value of u from formula (1.3) can be- 
come as large as you please; it follows from [11] that u actually has a 
limit as TO'~ T I. 

A review of various methods of solving the problem is given in [8]. 
In [9] numerical integration of the nonstationary system of heat-conduc- 
tion and diffusion equations was used to find u. In this section we pro- 
pose a method by which an approximate value of u and the temperature 
disttibutinn in the flame can be found fairly easily. As the example 
given at the end of the section shows, the value of u calculated bythis 
method is reasonably close to the exact value. The convenience of 
this method lies in the fact that the relationship between u and the 
patamete~ of the process is obtained in analytical form. We assume 
that Tix-.-0 = Tl; then fox x _> 0 

T ]x>~0 = (T1 --  To) exp (-- ux / k) + To . (1.4) 

To find the temperature distribution when x < O we replace func- 
tion F(T) by a piecewise-linear function in the interval iTs, Tz]. We 
perform the lineatization in the following way. We take a point T s in 
iT b T 2] and construct a triangle with base [Tl, T z] and its third vertex 
P situated above the point Ts. We require the area of the triangle to 
be equal to the area under the curve F(T), L e. ,  

T2 

S = I  F ( T )  J . 

It is obvious that the third vertex is uniquely determined (for a 
particular choice of Ts). The point T a can be chosen at the maximum 
point of F(T). We denote the function obtained in this way by P~(T) and 
we have 

(~:(T--T�94 for T I ~ T  % T s  (~1>0) 
F * ( T ) = ( ~  (T--T.,)  for T a ~ T ~ T O -  ( ~ < 0 )  

0 for T ~ T 1  and T ) T , ~ .  

Let T(x) take the value T s when x -- l < 0. Then for the interval 
(l, 0) the solution is given by the equation 

)~ do-T / dx ~ + u dT / dz  4- ~1 (T - -  TI) ~ 0 .  (1.5) 

In the integration of this equation it must be borne in mind that if 
To = T1, then u = 2(Xl~l)l/z, accordingto [12], and hence, for To < Tz, 
u < 2(AGO 1/z . The sointioii has the form 

T ]x~[/, 0] = C1 exp (-- ux / 2~,) Mn 1/o-~-z ~ uo-x) + T1. (I.8) 

The comtantC z is determined from the condition TJx= l = T s : 

@s --  T1) exp (ul / 2)~) 
C z =  sin (1/2~-z 1 / - 4 ~ ' 1  ~ u~l) " (1.7) 

For x -< l the solution is given by Eq. (1.1) in which F(T) = B2(T - 
- T~). This solution has the form 

T Ix<z=C~- exp (r~.x) + To , 

C2 = (7% --  T~.) exp (-- r~.l). 

When x = 0 and x = l the conditions of equality of the first deriva- 
tives must be satisfied. This gives us two equations for the determina- 
tion of l and u 

1 ( T a - - T O e x p ( u l / a ~ )  ~ u"- 
- -  (T1 --  To) u = 2 sin (I/_oE-~ ~ --  u~l) , (1.8) 
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+ 

t ] (T3 - -  T~) 
X ~ -  ~ s in  Q/~L -1 ]/4~.~1 - -  u~ (1.9) 

This system, however,  is unsui table for solntion and invest igat ion.  
Since T s is nsually close to T~, we convert  to the l i m i t  T s--~ T z. This 

l imi t ing  t ransi t ion can be interpreted as r ep lacement  of the function 
F(T) in the in te rva l  [T1, Tz] by the function ~(T - 371) , so that  the area 
of the corresponding t r iangle  is equa l  to I. In this case we have  

= 2J / (T2 - -  T1)" . 

From (1.9) we obtain 

tg  (V2L -1 ~ u*" l) = / ~ - 1  V 4 ~  - - / z  2 �9 ( 1 . 1 0 )  

Then ( t .8)  takes the form 

u exp (--  u! / s = ~ / T1 - -  T o .  (1.11) 

i t  should be borne in mind here  that  for a prescribed u a solution 
of (1.10) g iven  by the first nega t ive  root is considered. System (1.10), 
(1.11) uniquely determines  l and u. For u " * 0  we h a v e /  ~ 7r(X/B)l/~/2 
and l ~ -27rX/(4k3 - u~)l/~ as u ~ 2(M5~/z . An approximate  ex -  
pression for l is 

I=--2~L/ V-4L~--- u~ @ r t / 2  V - ~ ,  

u ~ 0 as T O ~ - -  0% 

u ~ 2 1 / ~  as T 0 ~  T1. (1.12) 

For sma l l  u we have  exp( -u l /X)  ~ 1 and formula (1.11) becomes 
formula (1.3). Since / < 0, formula (1.11) gives a value  of u less than 

t h a t  g iven  by (1.3). 
Thus, to ca l cu l a t e  u we must ca l cu la t e  the in tegral  J and then 

solve the system (1.10), (1.11). The required va lue  of u can  be" t r acked  
down" fairly rapidly  when one considers that  its m a x i m u m  possible 
value  is 2(N3)i/~. After f inding 1 and u we obtain the tempera ture  dis-  

tr ibution 

T Ix>o = (r~ - To) exp (--  ux / ~,) + T1, 

T [t<x<O = c exp (--  i A u x  / ~.) sin (~/~-x 4 1 / ' ~  - -  u~z) ~ T1,  

The dif f icul ty  arising out of introduct ion of the igni t ion  tempera ture  
T i has been noted in many  references.  I t  is diff icul t  to de te rmine  this 
tempera ture  exper imenta l ly ,  but i t  must come  into theore t ica l  models ,  
s ince usually there is a range of temperatures  greater  than To at which 
the gas does not react .  If the Arthenins law is used for t he reae t ion  rate 
F(T) = exp(-E/RT)(A - BT). 

In this case the value  of Ti can  be  chosen so that  after T~ the func- 

tion F(T) begins to increase rapidly.  Some arbitrariness in the choice  
of T 1 wi l l  not be  very s ignif icant  in  this case.  

In [6, 10] the following method was used to e l i m i n a t e  the igni t ion 
temperature.  In formula (1.3) the lower l i m i t  Ti of the in tegra l  is re-  
placed by To, and the difference T1 - To by the difference Tz - To. 
While rep lacement  of the lower l i m i t  is qui te  val id ,  s ince in  the inter-  

val  [To, Ti] function F(T) is c lose to zero, there  appear to be no grounds 
for the substitution of T 2 - To, i f  To differs great ly  from T i. For i l lus-  
t rat ion and comparison we consider an example  from [9], for the ease 
of interest  to us, i .  e . ,  equa l i ty  of the the rmal  diffnsivity and the dif-  
fusion coeff ic ient  (in the notat ion of [9] the ease a = 1). Function 

F (T) = 104 exp ( - - t 5  000/T)(2300 - -  T), ~ = 1, 

To = 3 0 0 ,  Ts = 2 3 0 0 ,  F ( 1 0 0 0 ) ~ 0 ,  F ( l i 0 0 ) ~ t . 6 ,  

F (t200) ~ 3.9, F (t300) ~ 99, F (1400) ~ 202. 

We put T 1 = 1200 ; then 

T~- -  To = 9 0 0 ,  T 2 -  T 0 = 2 0 0 0 ; J = 8 9 8 . t 0  S 

If we use formula (1.3), we obtain u = 1.5. If we rep lace  T i - To 
by T z - To, we obtain u = 0.67. The exact  va lue  of u, found in [9] by 
numer ica l  in tegra t ion ,  was 0.71. We ca lcu la t e  u by the method pro- 
posed in the present paper. We have B = 1.48 and omi t t ing  the in ter-  
med ia te  t r i a l  steps, we put u = 0.60. Then from (1.10) we have  l 

- 1 .6 ,  u exp( -u / )  = 1.56. The r ight  side of (1.11) is 1.5 and, hence,  

u can  be taken as 0.60. If  we take Tl = 1100 or T l = 1300, we obtain 
approximately  the same value  of u. 

w Combmtion  of condensed substances. The same method can 
be used to inves t iga te  the combustion of condensed substances (powders 

and solid rocket fuels). Let the solid phase (k-phase) occupy the region 
x > 0. We choose the origin of coordinates on the surface of combus-  

tion of the k-phase  and, hence,  the solid fuel  moves with ve loc i ty  u 
toward the surface x = 0. On the  surface x = 0 the k-phase  is decom-  
posed and in the region x < 0 there  are gaseous combust ion products 

l eav ing  the surface with ve loc i ty  au,  where a = PffP2,  and Pi, P~ are 
the densities of the k-phase  and the gas, respect ively .  The decomposi-  
t ion of the k-phase  can be endothermie,  exo thermie ,  or thermoneutra l .  

We wi l l  assume that  heat  uptake or heat  re lease  in  the k-phasedepends  
on q; q > 0 in the case of endothermie  decomposi t ion,  q < 0 in the 

ease of exo thermic  decomposi t ion,  and q = 0 in  the case of thermoneu-  
t ra l  decomposi t ion.  Then 

}~ d~'T / dx  ~ @ u d T  / dx = O, T ]x-=o = Ti, 

T I=~+oo = To (z>~O), 

;~ d2T / dx  "~ q- au  d T  / d x  -~- 1; (T)  ~ O, 

T ]  . . . .  = T 2 ,  T l a ~ _ o = T 1  ( x ~ O ) ,  

and also 

kl  d T  / dx  Ix=§ - -  k2 d T  / dx  [x=-0 = qplu , 

where ki and k z are the the rmal  eonduct iv i t ies  of the k-phase and gas, 
respect ively ,  and e 1 and c z are the corresponding speci f ic  heats.  

To solve this problem we proceed as in w by l inear iz ing  F(T) in  

the in terval  [TI, T2]. Omi t t ing  s imi la r  ca len iadons ,  we write the sys- 
t em  for I and u 

ki)~l-l ( T i  - -  To) + q  - u exp ~ , (2.2) 

2xL~. t f \ ~ .  % 
l ~  - -  V 4 ~ . z [ ~ -  a~'u" q- T x ( ~ = - ' '  (2.3) k P /  

Relationships (2.1) and (2.2) g ive  u as a function of To. If q > 0 
(endothermic decomposi t ion of k-phase) ,  then when To = Tt  the ve loc-  
i ty  does not a t ta in  the value  u = 2 ( k 2 ~ ) t / z / a .  In the case q = 0 the 
s i tuat ion is s imi la r  to tha t  considered in w If q = --p < 0, then at  the 

m a x i m u m  permissible  value  of To. g iven  by  the re la t ionship  

kl~i -i ( ' 2 " 1  - -  To) = PPl, Or Ci (T1 - -  To) = p ,  (2.4) 

the ve loc i ty  takes the value  u = 2 ( k z $ ) l / Z / a .  Wenom that  the denom-  

inator on the lef t  s ide of (2.2) cannot  be negat ive ,  s ince this would 

mean  that  p > CI(T I -- To) and the process depends on the decomposi-  
t ion of the k-phase,  and not on the reac t ion  in the  gas. 

w Behavior of t empera ture  gradient  a t  x = 0. We use the preced-  
ing results to inves t iga te  the behavior  of the gradient  at x = 0. The 
absolute value  of the gradient  wi l l  be considered. In the case of com-  
bustion of a gas we have from (1.11) 

r = (T i  - -  To) u / k ~ ~-i  ] ,2/L~j exp (ul / ~) ,  

~ , V - E Y / ~  as T o ~ - - ~ ,  4 . 0 ;  

r  as To . T I .  (3.1) 
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It is clear from (3.1) that q is a decreasing function of u(T0) and 
has no turning points. The greatest value of q is (2J/k) 1/s and is reached 
as To ~ --~. For each possible value of q there i~ one combustion 
regime. 

In the Case of combustion of condensed substances we obtain from 
formula (2.2) 

(T, - -  To) u I___ ~ k~ aul ] 
-- ~,t = k~ l. ~ 2]f '~J exp-~-2 --qp~uj. (3.2) 

Relationships (1.8), (1.10), and (3.2), (2.1) give ~ as a function of 
u and, hence, as a function of To. These relationships can also give u 
as a function of q~. 

If q m 0 we proceed in a similar way: if To "~ " %  then ~ "-" k~k~- ~ �9 
1 / 2  r 

�9 (2J/~k2) --the greate~tvalueofthe gradient. As To--* T x the value 
of q "-~ 0; q is a decreasing function of To and for each permissible 
value of ~ there is one combustion regime, 

We consider the case q < 0. Then (q = --p < 0) 

q~ ~ k2kl-~ V "2J / L~ as To ~ - -  oc , u -~ O , 

T ~ 2kC x ~ / ~  pg.p 

as  k l ~ l  - ]  (T1  - -  To)  ---> PP l  (Cl (T1 -- To) ~ p), 

u ~ 2~  -x ~ .  

It is obvious that we can regard p < cz(T z - Tl). Hence 

We find d~/du (in view of the fact that du/dTo > 0, the sign of 
d~0/du is the same as that of dq/dTd : 

It is easy to see that d~/du " ~ p ~  >0 as u--~ 2(~/~)t/2/a; as To --~ 

dqD t [ k2 - a ~ ~'2 1/' "~2~,2J ( I 

Hence, there is a point at which dr = O, but this will be a 
minimum, and not a maximum, point of the gradient. The question 
arises as to whether there are other turning points. It is obvious that 
for specific values of the parameters we can use (3.2), (2.1) to construct 
the graph of the function q(u) and verify the presence of a maximum. 
For smatl p there will be no other turning points. The rapid reduction 
of the factor exp(c~u//X) with increase in u sugges~ that, apart from 
the indicated minimum, there will be no other turning points for any p. 

w Applica~ion to investigation of the stability of combustion. As 
was mentioned in the introduction, there have been many investigations 
of the stability of powder combustion [1-5, 13]. It was suggested in 
[1, 2] that there is a value of the gradient V* such that a steady-state 
regime with a gradient greater than q* is impossible. The results of 
the present paper eonfJxm the pgesenee of a largest gradient for steady- 
state regimes. However, in the theory of stability of powder combus- 
tion it is very important to find out if this largest value is the maximum. 

It w as suggested in [2] that there is a maximum and that when dq/dT0 < 0 
the regime is stable, and when dq/dT0 > 0 it is unstable. A very general 
investigation ofstahilitywas made in [5]. Since in our model, as in [1,2, 
13], the temperature of the combustion surface is regarded as constant, we 
use the results of [5] for this ease. It was shown in [5] that if 

k ~ ( T 1 - -  To) d ln  u / dTo ~ l ,  

then combustion is stable and, if k > 1, then it is unstable. It is easy 
to see that the condition k < 1 (> 1) is equivalent to the condition 
d~/dT0 < 0 (> 0). But, as was shown above, in the case of endothermic 
decomposition of the k-phase (such a case is considered in [10 2]), k is 
always less than 1, i .e . ,  in this case the steady-state regime is always 
stable. This result seems quite natural, since the considered model of 
powder eombustionis similar to the model of flame propagation, inwhich 
the steady-state regime is always stable [7 ]. W e nora incidentally that in 
the case of normal flame propagation k < 1 and, hence, stability will 
el ls  n~ .  

In the case of exothermic decomposition we obtain the following 
picture. Here there is a minimum of ~(T0) and, hence, for small To 
we obtain dq/dTo < 0, consequently, stability. For large To we have 
dq/dT0 > 0 and instability of the corresponding regimes, tt is obvious, 
however, that this will not be instability due to decay of the process 
but, on the contrary, instability due to acceleration of the combustion 
process. 

The author thanks S. V. Fal'kovich for discussion of the paper. 
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